Tips on Cooking Both a Perfect Thanksgiving Turkey and a PCB

Why does it take half a day to cook a Thanksgiving turkey?  The answer is simple ― you have 20 lb of bird that simply cannot just be nuked in a microwave like last night’s dinner.  If not properly thawed, prepared and monitored, you either have an overcooked, dried-out bird or worse: Salmonella. Strangely enough, as you will see in a moment, PCBs are not that much different.

Let’s say you skip the thawing process and in your haste stick a frozen bird in the oven.  What happens?  The bird may look properly cooked on the outside, but as soon as you try your skill with the carving knife, you either hit bedrock or the inside is completely raw. OK, I will admit I speak from personal experience on this one (please do not bring this up with my wife).  Are PCBs any different?  Well, your reflow profile has a preheat phase, with the purpose of bringing your PCB to temperature. In other words, the entire mass of the board with all its components is gradually brought to equilibrium. If you do not do this, you run the risk of thermally shocking your components when they hit reflow and peak.  Thawing your bird and preheating your PCB ― you have the same objective in mind.

So, for the vast majority of us, we really have no idea when the turkey is fully cooked until getting an internal reading. A PCB is no different. On the surface, both might look great, but upon closer inspection, you discover some components have defects due to improper reflow or, for that matter, when you cut into a turkey that is still pink it really hits home that you aren’t cooking a TV dinner.

turkey-in-Spec_SM01

Because of this, as we all know, a 20 lb turkey requires a thermometer. I will concede that some of you use the old “poke the bird and check for pink until done” trick. Let’s assume you are not as skilled, like me, for example. Would you seriously cook a turkey by relying solely on the oven’s temperature reading on your stovetop?  Of course not, but why do some of you profile your PCB by relying on your reflow oven’s reported readings? Are either situation that much different?  Actually, yes. Your nice self-contained turkey cooking oven is more of a steady state, but there remains a large difference between what is reported by the oven and the internal temperature of your turkey. In contrast, your PCB is exposed to anything but a steady state environment because it rides on a conveyor through different heated zones with blowers, extraction systems and both ends of the oven even open to the elements!  For this reason, any oven manufacturer will adamantly tell you to profile and with regularity. Alright, you may have learned how to cook a turkey in your Mama’s kitchen and, in fact, be skilled at not using a thermometer; however, I doubt any serious SMT manufacturer would take a similar approach, checking your PCBs regularly for “doneness” in your reflow process.

What about placing the fate of your Thanksgiving feast on the cheap-o plastic pop-up indicator that likely came with the turkey? Do not laugh. How many of us use the trailing wires that came with the reflow oven?  Now to be fair, both work in principal; otherwise, you would have the likes of Purdue Farms with food poisoning lawsuits on their hands, but they only give you ballpark readings in many cases. By design, the turkey is going to be a little overdone and dried out.  Your PCB, on the other hand, cannot afford to be a little overdone or it is simply OUT of spec.  You can get by with eating the overcooked turkey … the gravy and mashed potatoes are there to make up for less than a perfectly cooked bird. But your PCB will not be as forgiving.  Trailing wires, never mind being cumbersome to use, have a tendency to kink and stretch, which compromise their readings.  They also are susceptible to 50 or 60 cycle noise from some reflow oven environments, further questioning their accuracy in some cases.

So you want to cook the perfect bird. Who doesn’t? So you pony up for a stainless steel large-dial meat thermometer to accurately read the internal temperature of your 20 lb bird. You also pony up for a KIC Explorer with Navigator because you want to create the perfect deep-in spec reflow profile. It will not only tell you the specific temperature of the joints of your $500 BGAs, but it also will find a balance that does not overcook them or any of your other temperature-sensitive components on the PCB.  No pop-up indicator profiler needs to apply since the KIC Explorer with Navigator will go the extra mile and tell you not only if you are in-spec but how DEEP in-spec your profile is, along with what can you do to improve the profile in minutes, if not seconds.  Now do you know of any turkey thermometers that can do that?

So when you prepare your Thanksgiving turkey, and as you pause to give thanks, consider applying the same care and consideration that you have given to your family’s feast as you do to your PCBs.

Happy Thanksgiving – Profilingguru

Share

Stop Destroying PCBs in profiling your reflow process

2009 Presentation at SMTA Long Island on how to use software tools that avoid destroying your PCBs during the profiling process.

To view the complete video series (click here).

To subscribe to my Podcast for iTunes (click here).

Share

What to do with Zig-Zagging TC Readings?

What’s wrong with this picture?

Profile Lose TC

Well if you have ever used Kapton tape to attach a thermocouple, you have certainly seen your share of profiles like this!

So what, it is a perfectly good profile, right?  Yes, but no.  I had a customer who was using KIC’s Navigation (auto prediction) to help create a better “deep in-spec” profile.  The only problem, they were trying to optimize on a TC reading that was bouncing literally all over their PCB.   Navigator is an awesome tool, but it can only work with what you feed it.  If you feed it garbage, it will give you garbage.  In their case, it was trying to find them a new solution where literally every time the board was run the bouncing TC that was attached (or I should say was not very well attached) with Kapton was giving false readings.    Navigator would give a different solution based on what the TC was reading at that given time.   It is like try to put post-it notes on the ocean.

Solution is very simple, eliminate the TC reading from your graph.  You can easily do this with the profile you just ran.  Look what happens, you go from a far out-of-spec of 126% PWI to a far in-spec of 48% PWI.

Profile Lose TC2

So you saved your hard work this time, but you are after all one thermocouple reading short.  You added that TC to your profile for a reason.  Next go around, do yourself a favor and use a better material for attachment, such a conductive double side aluminum tape, which by the way, a recent study from RIT proves it a superior attachment method aside from sticking to your PCB much better.

Share

Across the Belt Uniformity and Reflow Profiling

I am often asked the question about how to handle components that are close to the outer edge of a PCB.   Today a question came in on Circuitnet to highlight this problem:

Title: Issues with BGA Components Near PCB Edges

What issues are we likely to see when we place BGA components very close to PCB edges?

What impact might it have on reliability?

Will equipment (screening, placement, reflow, etc.) require modification?

T. B.

I leave it to the screen printer, pick and place and reflow oven guys to answer the equipment part of the equation, but I can answer how one can determine with a profile if your BGA is getting what it needs as well as how other aspects of your PCB are impacted.

Across the Belt Uniformity:

There can be anywhere from a 2 – 5+C variation in temperature across the belt.  For example, BTU uses this homemade fixture to test for uniformity.  The idea is fairly simple.  With a set of type K calibrated thermocouples, you can easily monitor 6 TCs across the belt.  You want obviously to see the least amount of variation (if you were wondering the front TC is for measuring air temperature which is also used for automatic mapping of the profile to the oven zones with KIC2000 software).

BTU tool

Profiling for Reflow:

BGAs typically require more heat to reach their peak temperatures than smaller massed components like electrolytic capacitors.   For example, your BGA might have a peak temperature of 245C.

PCB2

While your electrolytic capacitors cannot tolerate as high as a peak temperature, therefore you want to set their maximum peak temperature lower, for example to 235C (this is just a relative example).

PCB3

With KIC2000 software, you can define each component in isolation.  If the BGA is off on the edge, I might need to bump up even further my peak temperature spec since in many reflow ovens, the outer edge near the rail is the coolest.  This is why you see some ovens with heat tape running along the rails!  Keep in mind of course as you crank up your oven to reach higher temps to reflow your outer edge BGAs, everything else on your board is also going to be impacted.   More the reason you better be hooking up thermocouples to temperature sensitive components to ensure they do not get fried while you are focusing your attention on your BGAs.  Profiling software that can “balance” the board is a must.  If there ever was a case where software can help solve complex problems in profiling, here you go!

I had a webinar back in July talking about BGA profiling.  There is also a video that illustrates what I explained above.  You can find this in an earlier posting:  http://profilingguru.com/reflow/profiling-bga-webinar/

Share

Thermocouple Attachment Results are in!

The Rochester Institute of Technology under the guidance of Dr. S. Manian Ramkumar Ph.D. just conducted (October 2009) the most comprehensive study to date on thermocouple attachment methods.  Part I of II was to determine the most accurate and reliable method of thermocouple attachment.  Part II that has yet to be released is to determine the best attachment methods for BGAs, with the goal of seeing if there are reliable non-destructive methodologies, so stay tuned.

Results in a nutshell:

Aluminum Tape out performed all materials even Kapton! In an ideal word, the best attachment method of a thermocouple to a component is what I like to call a naked TC.  Aluminum double sided conductive tape was the closest thing to having nothing at all to attach the thermocouple.  Kapton tape is less responsive (deflecting and insulating heat), never mind if you have ever seen a saw-tooth TC plotted on a profile you know it has a very hard time staying in place on your PCB.   Additionally, High Temperature Solder which I have always considered the gold standard, is the least accurate or responsive.  When you get to the critical peak temperature of your profile, high temperature solder is sluggish to respond to the rapid change in temperatures, thus distorting your readings. As Phil Zarrow and Jim Hall discuss in Board Talk, “mass” on your thermocouple is not your friend.  Phil Zarrow:

any measurement method, the key element is to get the thermocouple in good contact with what you are trying to measure and to do it in a way that does not modify the area with a lot of extra mass or material that is going to give you an inaccurate reading….

Bingo!  This is actually what this study shows, now with the numbers to back it up.

Study Methodology:

The study looked at:

  1. Aluminum Tape
  2. Kapton Tape
  3. Chemtronics – CircuitWorks CW2400- Two Part Epoxy
  4. High Temperature Solder
  5. Loctite – 382 Instant Adhesive

The study used a KIC Explorer with standard type K thermocouples.  Multiple runs of a substrate coupon (62 mils thick plain copper coated with silver) was routed into 12 uniform 0.24″ isolated sections.

Test bank2Three identical test coupons were used and run multiple times.  KIC’s air-TC was utilized as the control to which each thermocouple was measured as the coupon traveled through all heated zones.

A total of three boards were used, running each board through twice, allowing the internal temperature of the KIC device to drop below 40 degrees C before rerunning the profile.

The tape attach methods were measured uniformly for each RTD connection, using a dial caliper, while the high temperature solder and epoxy quantities for attach were found to be visually uniform.

Mean

This graph indicates the mean temperature differential that was noticed within the oven for the various attach methods. The readings are based upon the complete profile starting at room temperature and ending at the peak temperature. The data from the cool down zone was eliminated from the analysis.

The graph shows the mean differential and the 95% confidence interval for each attach method. The Aluminum tape had the least differential (-0.48) followed by Kapton Tape, Loctite Adhesive, CW-2400 and then HT-Solder. The Confidence intervals among most of the attach methods do not overlap except Kapton and Loctite, indicating that the means of the attach methods are significant. Significant differences exist between the methods except between Kapton and Loctite as there is overlap. Clearly Aluminum tape outperforms all of the other methods.

Zone Differences

The thermocouples seem to behave similarly within each of the zones of the oven. Zone 6, where the soldering takes place or the peak temperature is reached, the thermocouple attach methods show a much higher temperature than the air temperature, indicating that the PCBs have attained much higher temperatures than the air. A closer examination of ZONE 6 reinforces the selection of Loctite or Aluminum Tape for Phase III of this project.

Conclusion:

When considering accuracy, repeatability and responsiveness, Aluminum Tape is a winner.   There are of course advantages and disadvantages to each material.  For example one can argue you can re profile a PCB set up with high temperature solder, but considering that the mass of the solder distorts your readings, this study even brings into question this bedrock of thermocouple attachment.  Never mind high temp solder destroys your PCB as well as there is little control over the size of the blog from TC to TC and board to board.   Also don’t forget every time you profile the same board again it loses some mass, which will be the focus of more blogs to come.

Share

Why are you replacing BGAs?

There is a great post today in Circuitnet titled “BGA Replacement Limits,” that can be found under Circuitmart.  Panelists answer the following question:

How many times can a BGA component be replaced at the same location on the same PCB and retain reliability?

Mark McMeen of STI Electronics suggests that the answer may be as little as two times!

…most companies err on the cautious side and only replace twice at the same location after the initial build which is normally 2 thermal cycles for top and bottomside reflow thermal cycles.

I think a broader question needs to be asked, why are you replacing BGAs in the first place?  In my experience, often the answer is due to poor reflow profiling.  Often there is nothing wrong with the oven, PCB or BGA.   Why is it so hard to properly profile a BGA?  I believe the reason is most folks don’t have the option of placing a thermocouple underneath the BGA nor sacrificing a board in drilling a hole on the underside for TC placement.   In the old days, you could get away with snaking a TCs under the BGA, but with micro BGAs this is just not an option.  So what do people do?  They stick a TC on top of the BGA or along side it.  Many do nothing at all which is kind of scary and wind up asking question like how many times can I redo my board.

To go to show how hot of topic this is, I held a series of webinars a couple months ago with a turnout in the hundreds.  I shared some ideas, here is an abridged 8 min version of the session for those of you that missed it. Part of the answer is proper TC attachment which by the way is currently under study at RIT to see the most reliable method as well as determine if there is a non destructive methods that is both valid and repeatable.

The other part of the equation is profiling your PCB not only for your BGAs but also those components that cannot tolerate as high of temperatures. I’ve seen plenty of manufacturers so focused on a $500 BGA, ignoring pretty much what else is going on with other components on their PCB.   Certainly having the ability to define separate specifications, for example a peak temp for a DIP while addressing the special needs of your BGAs will lead to fewer BGAs having to be reworked in the first place.

After all, which is better, to treat the symthoms or the root cause?

Share

Thermocouple Attachment Discussion

Phil Zarrow and Jim Hall of ITM Consulting have a very good piece on TC attachment on Board Talk hosted by Circuitmart.com.

In their first session, they talk about permanent TC attachment, such as high temp solder and epoxy (click here for a link to their recording).  Yours truly left a comment with the boys:

We are a big fan of conductive Aluminum tape, used along with Kapton for strain relief like you mention in your podcast. We talk about high temp solder and epoxy which can work also, but like you said you got to be careful of mass. Lot of times we see unequal amounts applied per TC that can throw your readings. What is your take on aluminum tape, realizing of course it is a non permanent solution?

Well, they came back with a terrific response (click here for a link to their recording), where they make a clear distinction between destructive vs. non destructive methods.  Non destructive methods are often the only option, since customers cannot sacrifice a board for profiling.

Phil goes on to say:

any measurement method, the key element is to get the thermocouple in good contact with what you are trying to measure and to do it in a way that does not modify the area with a lot of extra mass or material that is going to give you an inaccurate reading….

Phil talks about using for example Kapton as a strain relief to ensure there are no stresses on the point of TC attachment.  I’ve been saying for years to use techniques such as window paning where you apply Kapton around the boarder of your aluminum tape to help keep your TC secure if profiling more than once the same PCB.  Make sure not to put Kapton over the bead since Kapton can behave as an insulator.

I think Phil makes a great point on emphasizing the “size” of the tape you are using.  Again you don’t want the material’s mass to become an issue.  So the name of the game is don’t go overboard.  Personally I prefer a 1/4″ square piece of aluminum tape along with 1/4″ Kapton.

Jim Hall makes also an excellent point that the same goes for “destructive” methods when using high temp solder and epoxy.  You don’t want to overdo it, or the mass can effect your readings.   I would add further that you need to be very careful that the mass be equal from TC to TC.   It has been my long held belief that the blob of epoxy or solder if of unequal amounts TC to TC, PCB set up to PCB set up will add variability into your process.  Just keep your materials to a minimum to get the job done.

Many of these assertions are currently under review by an RIT study.  Hope to have results as early as the end of this month.  KIC conducted a study 10 years ago on all the materials mentioned (click here for the report).  Since a decade has past, one could assume materials have improved therefore warranting a second look.  Stay tuned!

Share

Non Destructive BGA Profiling Test #1

I am currently investigating a non destructive method of BGA profiling that is reliable.  Here are the results of my first test.

Set Up:

Four thermocouples are attached to the same BGA (TOP, SIDE, INSIDE and BOTTOM surface), as pictured below.  Conductive aluminium double sided tape is used along with Kapton.  A KIC Explorer is the profiler.

To see more on Thermocouple attachment visit my post:  http://profilingguru.com/tcs/thermocouple-attachment/

A hole was drilled out to attach the INSIDE TC.

pic1

pic2

Results:

Two tests were run, the first was running the board on the belt followed by running the same board on the chain/tab conveyor.

sample1

As you can see the delta for ramp and peak is the greatest, while soak is minimal.  The inside TC runs the hottest and the underside bottom TC follows fairly closely the behavior of the inside TC.

sample2

This second profile was run on the belt with the same board but for a different BGA.   Again we see similar behavior, where the INSIDE and BOTTOM TCs exhibit similar behavior.

sample3

This third profile was running the same board and same BGA as in the second example but this time on the chain/tab.   Interestingly, all TCs were a good predictor of the INSIDE TC except when getting to the cooling zone.  The BOTTOM TC was only a good predictor of the INSIDE TC.

Share

BGA Profiling Webinar Recording

The following presentation was first held as a 30 min BGA Profiling webinar in July 2009, with over 120 participants.  Due to its popularity an abridged 8 min version was created.

To subscribe to my Podcast for iTunes (click here).

Share

Profiling BGA Webinar

Profiling BGA Webinar Supplemental (July 1, 2009):

Component Specific Specs

We discussed the need to define BGA specs separate from other components that have different reflow requirements.   BGAs typically require more heat to reflow properly but typically there are many other “smaller” components that also populate a PCB that will overheat if you develop your process solely around the BGA.   The following 2:40 min video reviews how you can bring both your BGAs and other temperature sensitive components into spec, striking a thermal balance that results in quality products.

Thermocouple Attachment

The following 1 min video shows one of the most reliable direct methods of TC attachment for BGA profiling.

…..but, who can always sacrifice a PCB in the process?   We talked about some indirect/non-destructive methods for profiling BGAs that are suggestive, but inconclusive.   In the fall I hope to have some results of a study that will help our industry come up with solutions that one can reasonably predict the temperature/profile of a BGA without destroying the PCB in the process or worse the BGA!

BGA Inspection

First there was SPI (solder paste inspection), then there was AOI, now there is RPI (Reflow Process Inspection)

rpi-smt-linerev-11

You can see a prior blog posting discussing RPI at:   http://profilingguru.com/reflow/what-is-reflow-process-inspection/

RPI works in the world of continuous reflow monitoring, where a profile is created for each and every production board.

In order to automate reflow profiling, a baseline/virtual profile is first established, where one runs a traditional profile with PCB, TC attachment and profiler while the on-board system of 30 thermocouples gathers the same profiling data and reconstructs and converts the traditional profile to a virtual representation. Once a virtual profile has been established, profiles can be collected for all production boards.  SPC charting, cPk, traceability and process control are all possible.

So rather then the reflow process being a black box, where anything and everthing can go wrong…..

illustration_5….alternatively, do you not only know what is going on continuously, but your BGAs using the techniques above are being monitored on a continuous basis.

reflow-yield_3in_nk

Your Questions:

Q: Doesn’t the thermocouples utilized by the oven itself (assuming that they are calibrated and verified) provide the same basic information as the secondary set of TCs you are referring to?

ANSWER:  No, the oven thermocouples and the secondary KIC  TCs have completely different and separate functions.  The oven TCs are typically located close to the heaters since their job is to turn the heaters on and off as the temperature drifts from the set points.  The KIC 24/7 (or KIC Vision) TCs, located along the conveyor, help to automatically measure the profile that each PCB experiences as it is processed through the reflow oven or wave solder machine.  This function is called Virtual Profiling.

Virtual Profiling (VP) provides process traceability as it logs the profile for each PCB, along with information on how this profile fits the established process window.  The VP works in real time and offers instant alarm when the process (profile) drifts out of spec.   Because it provides basic SPC charting, it acts as an early warning system for trouble ahead.  Think of the KIC24/7 or KIC Vision as an automatic profiling system in real time.

Q:  I encountered wetting issue with CSP and BGA, how do I solve them?   /   Q: How about wetting issue?

Answer; In some cases, but of course not all cases, wetting issues are a result of incomplete flux activation in the solder paste and an overall low temp soak, where the components did not reach sufficient energy levels before entering the reflow, TAL stage of the process. Many of these issues are related to Pb – free solder pastes, mixed RoHS components or a number of other variables.

I suggest that the best answer is to research the publications available on the Web for the most relevant solution. The following is a link that closely resembles the issue, but again, you will need to research the most relevant to your situation.

http://www.emsnow.com/cnt/files/White%20Papers/Henkel_Leadfree_Designing_Reliability.pdf

Q:  How do you take measurements on each board without TCs?

Answer: KIC software algorithms compare what was observed at the time of the Baseline Profile to what is present within the oven during production. Using the 30 thermocouples in the oven, this data is communicated to the eTPU and the output is the PWI based on the specific process and the specification of that process.

Q:  How well does the DPMO relate to the actual defect where there could be placement defects interacting with reflow?

Answer: DPMO is a parameter of only the thermal reflow process. If issues exist in placement or screen printing, it will not be reflected in the DPMO, since KIC is only monitoring the thermal process. Given that all other aspects of the SMT line is functioning properly, DPMO will give an assessment of the thermal defects assuming that the proper solder paste and placement is present at the time the product enters the oven.

Q:  What about paste formulations?

Answer: KIC works with any solder paste manufactures to build the solder paste library that is present in the KIC software. This library is updated periodically and verified by the solder paste manufactures in most instances. The library however does not at any one time contain all information about all possible solder pastes. We try our best to be certain the information is present, but changes in formulation and engineering at the solder pate manufactures sometimes causes gaps that are beyond our control.

Q: How important is it to drill into the BGA ball and put the TC in it, vs. putting on the package, slip under the package, and on the bottom side of the board?

Answer: There are many variables in PCB design and component placement that directly and indirectly affect other components, in this case BGA. The best possible answer to this question is in the amount of data that is collected, how it is collected and how this information is applied to the specific PCB and BGA directly. Gathering as much information as possible, charting this info and drawing data driven values is the best possible formula for successful BGA reflow. Using all available data collection methods and positions aids in successfully reflowing this package.

As indicated during the webinar, we are currently commissioning a study to see if non destructive methods can be used in place of drill a hole.

Q: Does your software always choose an extended peak recipe?

Answer: No. Based on the type of recipe and profiles that are part of your normal production determines what path the KIC Navigator (auto-prediction) directs the profile. If your profiles are mainly RTP, the software looks at the values of the library data and suggests set points that will lead to a RTS profile. If your profiles are largely RSS, then the suggested set points will tend towards a RSS profile.

Share