Tips on Cooking Both a Perfect Thanksgiving Turkey and a PCB

Why does it take half a day to cook a Thanksgiving turkey?  The answer is simple ― you have 20 lb of bird that simply cannot just be nuked in a microwave like last night’s dinner.  If not properly thawed, prepared and monitored, you either have an overcooked, dried-out bird or worse: Salmonella. Strangely enough, as you will see in a moment, PCBs are not that much different.

Let’s say you skip the thawing process and in your haste stick a frozen bird in the oven.  What happens?  The bird may look properly cooked on the outside, but as soon as you try your skill with the carving knife, you either hit bedrock or the inside is completely raw. OK, I will admit I speak from personal experience on this one (please do not bring this up with my wife).  Are PCBs any different?  Well, your reflow profile has a preheat phase, with the purpose of bringing your PCB to temperature. In other words, the entire mass of the board with all its components is gradually brought to equilibrium. If you do not do this, you run the risk of thermally shocking your components when they hit reflow and peak.  Thawing your bird and preheating your PCB ― you have the same objective in mind.

So, for the vast majority of us, we really have no idea when the turkey is fully cooked until getting an internal reading. A PCB is no different. On the surface, both might look great, but upon closer inspection, you discover some components have defects due to improper reflow or, for that matter, when you cut into a turkey that is still pink it really hits home that you aren’t cooking a TV dinner.

turkey-in-Spec_SM01

Because of this, as we all know, a 20 lb turkey requires a thermometer. I will concede that some of you use the old “poke the bird and check for pink until done” trick. Let’s assume you are not as skilled, like me, for example. Would you seriously cook a turkey by relying solely on the oven’s temperature reading on your stovetop?  Of course not, but why do some of you profile your PCB by relying on your reflow oven’s reported readings? Are either situation that much different?  Actually, yes. Your nice self-contained turkey cooking oven is more of a steady state, but there remains a large difference between what is reported by the oven and the internal temperature of your turkey. In contrast, your PCB is exposed to anything but a steady state environment because it rides on a conveyor through different heated zones with blowers, extraction systems and both ends of the oven even open to the elements!  For this reason, any oven manufacturer will adamantly tell you to profile and with regularity. Alright, you may have learned how to cook a turkey in your Mama’s kitchen and, in fact, be skilled at not using a thermometer; however, I doubt any serious SMT manufacturer would take a similar approach, checking your PCBs regularly for “doneness” in your reflow process.

What about placing the fate of your Thanksgiving feast on the cheap-o plastic pop-up indicator that likely came with the turkey? Do not laugh. How many of us use the trailing wires that came with the reflow oven?  Now to be fair, both work in principal; otherwise, you would have the likes of Purdue Farms with food poisoning lawsuits on their hands, but they only give you ballpark readings in many cases. By design, the turkey is going to be a little overdone and dried out.  Your PCB, on the other hand, cannot afford to be a little overdone or it is simply OUT of spec.  You can get by with eating the overcooked turkey … the gravy and mashed potatoes are there to make up for less than a perfectly cooked bird. But your PCB will not be as forgiving.  Trailing wires, never mind being cumbersome to use, have a tendency to kink and stretch, which compromise their readings.  They also are susceptible to 50 or 60 cycle noise from some reflow oven environments, further questioning their accuracy in some cases.

So you want to cook the perfect bird. Who doesn’t? So you pony up for a stainless steel large-dial meat thermometer to accurately read the internal temperature of your 20 lb bird. You also pony up for a KIC Explorer with Navigator because you want to create the perfect deep-in spec reflow profile. It will not only tell you the specific temperature of the joints of your $500 BGAs, but it also will find a balance that does not overcook them or any of your other temperature-sensitive components on the PCB.  No pop-up indicator profiler needs to apply since the KIC Explorer with Navigator will go the extra mile and tell you not only if you are in-spec but how DEEP in-spec your profile is, along with what can you do to improve the profile in minutes, if not seconds.  Now do you know of any turkey thermometers that can do that?

So when you prepare your Thanksgiving turkey, and as you pause to give thanks, consider applying the same care and consideration that you have given to your family’s feast as you do to your PCBs.

Happy Thanksgiving – Profilingguru

Share

Reducing Reflow Product Changeover Time

2009 Presentation at SMT Long Island on how to reduce the changeover time from one reflow profile recipe to another.  If you ever opened up your reflow oven to dump all its heat to lessen downtime, this 4 min video is for you!!!

To view the complete video series (click here).

To subscribe to my Podcast for iTunes (click here).

Share

SMT related Links to know

RSS feeds, Tweets, blogs and newsletters, how do you keep up?   Well here is the latest on what’s available in the SMT industry.   I subscribe to all of these newsletters and regularly pick out areas of interest related to profiling for you.   I also comb the blogs though I only know of two, not including profilingguru, which is quite remarkable considering other industries have hundreds if not thousands.   The SMTA group forum on LinkedIn yields on occasion a nugget, but you need to build a profile to join.  SMTnet has always been a jewel.  Lastly, Twitter is a new phenomenon for many of us.   I am still trying to get the knack of it myself but it does have some value no doubt and will continue to grow.

On-line Newsletters:

Circuitnet

Electronics Production World

EMS Now

GlobalSMT

PCB Update

SMT Week

Blogs:

Circuits Assembly

Forums:

SMTA on LinkedIn

SMTnet

Twitter:

Circuit Assembly

Global SMT

SMT Magazine

Share

Running lead free and eutectic PCBs simultaneously on the same reflow oven

Surface Mount Technology ran a piece titled Parallel Processes: Simultaneous Lead and Lead-free Soldering with a Single Reflow System written by Hans Bell of Rehm Thermal Systems GmbH.  Hans details a study where by controlling conveyor speed of each lane of a dual-lane system, it is possible to run both a lead and lead free product simultaneously.

The devil of course is always in the details:

Definition of the process window must always be based on the “weakest link,” namely the component with least amount of thermal stability during the soldering process. If two different processes are to be set up next to each other in the same reflow system, and if thermally sensitive components are included on the PCB, great flexibility is required for parameters configuration.

The ability to develop process windows for each product leaving enough room for each to call upon the same oven zone set points is key and of course taking into account special temperature tolerant components on each board.  Hans’ idea is intriguing.  Based on my experience in a world were many PCBs manufacturers struggle to profile or perhaps do not profile at all,  this is certainly a tall order.  Nevertheless his idea is do’able for perhaps many processes, since changing just the conveyor speed to reduce product changeover on a single lane oven is being done today (click here for an excellent application note using KIC product’s to achieve this end).  Why this couldn’t be adopted to a dual lane system running both lead and lead free simultaneously has its merits.

Share

How to Maximize Reflow Ovens Throughput

The following video shows you how to in the fewest steps possible in the least amount of time increase your reflow ovens throughput while maintaining an in-spec process.   In this real life example, throughput was increased by 20% in 20 minutes time!

Share

Maximize Throughput | Profiling Software

Many of you will have an issue with “bottlenecks” in your process. This can happen at any point in the SMT Reflow process. Depending on the product that you are manufacturing, it is also likely that the “bottleneck” will jump from equipment set to equipment set.  For our purposes, let’s look at the reflow process when it is identified as your bottleneck.

I have seen several methods that address a reflow bottleneck. The obvious solution is to increase the conveyor speed of the reflow oven. This is a task that requires a bit of skill.  Your profiler becomes the single most effective tool to improve the Throughput Time (TPT) of the reflow process.

Let’s look at the fundamental changes of your profile with an increase in conveyor speed.  First, the PCB will spend less time in each zone. Also, your process will move toward the shorter end of your spec as defined in seconds.  For example, if soak time is defined as 30 to 90 seconds,  your actual process will be perhaps in the 30-50 second range as opposed to a comfortable 50-70 second range that was established at slower conveyor speeds.

The longer the oven, the more wiggle room you have for increasing conveyor speed without having to make significant changes to your profile.  Having a longer oven suggests that the PCB stays in the reflow process for a longer period of time, but keep in mind that it really comes down to how many products per minute exit the oven. Whether the oven is 10 feet or 30 feet in length, a higher conveyor speed will increase the number of products that exit the oven per minute.

Work In Process (WIP) is determined from the time the lot enters the SMT process to the time it is ready for shipment as a finished product. This duration is stated normally in hours and can add up to a few days to weeks, depending on the product. Having a longer oven does not mean increased TPT nor does it violate your WIP objectives.

It is tricky working with shorter ovens with fewer zones since they do require higher temperatures per zone to reach the desired specifications, as compared to longer ovens. I have found that using solder paste that uses a Ramp to Spike (RTS) profile works better in ovens with fewer zones. The RTS pays less attention to the soak and more to the overall length of the profile (the soak, of course, is often not listed in the solder spec for an RTS profile). Also, shorter ovens impact the slope in the RTS profile. For example, if you have a 5 zone oven, the first zones will need to be set at a fairly high set point in order to process the rest of the profile. At this point, the slope becomes very steep as the PCB moves from ambient to 160°C.  160°C could be the set point of the first zone! Also, in a distance of just a few feet, the product will need to rise in temperature to greater than 217°C in PB Free and above 183°C in eutectic solder. Many specifications will call for a peak of 200 to 240°C, which puts further demands on your shorter oven. In this instance, it is desirable to calculate the slope over the entire profile, setting it from 130°C to 180°C over a shorter period of time. Again, you need to look at how long (in seconds) the PCB stays in each area of the profile when designing your spec.

Now that we have looked at oven length when considering an increased throughput, how do we develop a profile that will remain within specification at higher conveyor speeds?  Some profiling software will allow you to make a desired change to conveyor speed and then return a predicted profile. This typically can be completed in seconds, before even running your first profile.

A clever feature of some profiling software is that you can set a range of allowable conveyor speeds while maintaining acceptable limits to your process window.  For example, when factoring the variability (drift) in your oven, you can comfortably run your process using only up to 70% of your available process window. In practice, anything over 70% is risky due to drift that can push your process out of spec. To eliminate this concern, run a “what if” scenario, where you define your minimum and maximum range for conveyor speed and maximum allowable PWI (in this case, set to 70%).

optimizeconveyor

The profiling software will literally search billions of possible combinations, giving you the maximum possible conveyor speed without violating your 70% PWI threshold.  Of course, you may find the conveyor speed to be too slow still.  What can you do? Bump up your allowable process window or buy a new oven. In either case, you are in control of your predictive modeling (this sure beats hundreds of hours of trial and error and possible board destruction). This process is similar to the prior section on Getting your Product Deeper in Spec and it will take as long as it takes to heat up or cool down your oven and re-profile if verification of your new predicted profile is required.  In practice, I find that it takes less than one hour.

Share