Reducing Reflow Product Changeover Time

2009 Presentation at SMT Long Island on how to reduce the changeover time from one reflow profile recipe to another.  If you ever opened up your reflow oven to dump all its heat to lessen downtime, this 4 min video is for you!!!

To view the complete video series (click here).

To subscribe to my Podcast for iTunes (click here).


Getting your Profiler Deeper within Specification

2009 Presentation at SMTAI San Diego on how and why you need to drive your reflow profile deep within specification.  After you watch this 8 min video you will never take profiling for granted again!

To view the complete video series (click here).

To subscribe to my Podcast for iTunes (click here).


What to do with Zig-Zagging TC Readings?

What’s wrong with this picture?

Profile Lose TC

Well if you have ever used Kapton tape to attach a thermocouple, you have certainly seen your share of profiles like this!

So what, it is a perfectly good profile, right?  Yes, but no.  I had a customer who was using KIC’s Navigation (auto prediction) to help create a better “deep in-spec” profile.  The only problem, they were trying to optimize on a TC reading that was bouncing literally all over their PCB.   Navigator is an awesome tool, but it can only work with what you feed it.  If you feed it garbage, it will give you garbage.  In their case, it was trying to find them a new solution where literally every time the board was run the bouncing TC that was attached (or I should say was not very well attached) with Kapton was giving false readings.    Navigator would give a different solution based on what the TC was reading at that given time.   It is like try to put post-it notes on the ocean.

Solution is very simple, eliminate the TC reading from your graph.  You can easily do this with the profile you just ran.  Look what happens, you go from a far out-of-spec of 126% PWI to a far in-spec of 48% PWI.

Profile Lose TC2

So you saved your hard work this time, but you are after all one thermocouple reading short.  You added that TC to your profile for a reason.  Next go around, do yourself a favor and use a better material for attachment, such a conductive double side aluminum tape, which by the way, a recent study from RIT proves it a superior attachment method aside from sticking to your PCB much better.


Running lead free and eutectic PCBs simultaneously on the same reflow oven

Surface Mount Technology ran a piece titled Parallel Processes: Simultaneous Lead and Lead-free Soldering with a Single Reflow System written by Hans Bell of Rehm Thermal Systems GmbH.  Hans details a study where by controlling conveyor speed of each lane of a dual-lane system, it is possible to run both a lead and lead free product simultaneously.

The devil of course is always in the details:

Definition of the process window must always be based on the “weakest link,” namely the component with least amount of thermal stability during the soldering process. If two different processes are to be set up next to each other in the same reflow system, and if thermally sensitive components are included on the PCB, great flexibility is required for parameters configuration.

The ability to develop process windows for each product leaving enough room for each to call upon the same oven zone set points is key and of course taking into account special temperature tolerant components on each board.  Hans’ idea is intriguing.  Based on my experience in a world were many PCBs manufacturers struggle to profile or perhaps do not profile at all,  this is certainly a tall order.  Nevertheless his idea is do’able for perhaps many processes, since changing just the conveyor speed to reduce product changeover on a single lane oven is being done today (click here for an excellent application note using KIC product’s to achieve this end).  Why this couldn’t be adopted to a dual lane system running both lead and lead free simultaneously has its merits.


Plugging the Hole in the SMT Reflow Inspection Process

MB (Marybeth) Allen, General Manager of KIC Europe in an interview with makes a terrific case for RPI (Reflow Process Inspection). MB_Allen

Here are some excerpts:

Q. 2009 saw the introduction of your RPI In-Line Process Inspection System for SMT reflow ovens.  For manufacturers currently relying on AOI and X-Ray systems to carry out inspection functions, can you explain how this system works and why RPI should be the choice for this process?

Automated inspection systems have become critical in controlling quality throughout the manufacturing process.  SPI (solder paste inspection) and AOI (automated optical inspection) are excellent defect detection tools, within the limitations of their design.  The RPI (reflow process inspection) inspects the reflow process for each and every manufactured PCB.

The quality of a solder joint is not only a function of whether there was adequate solder, accuracy of placement, missing components etc., but that the solder was processed correctly.  For example, the peak temperature needs to be high enough, but not too high to damage the component; the time above liquidous must be within the required range etc.  The AOI machine is not designed to check for these critical events.

KIC’s RPI verifies that the PCBs have been manufactured within the required thermal process window.  Perhaps the best example of where RPI complements AOI is in the soldering of BGAs and other Area Array Packages, where the AOI machine cannot see the solder joints as they are hidden from view by the component body.  RPI even complements X-Ray machines as these inspection systems cannot tell whether the solder joints were processed in accordance with the required profile specs.

Q. So KIC RPI offers both oven and product data in one solution, this obviously enables the operator to harness this key data and use the yield charts to refine the process. What type of data do they receive and how easy is this to understand?

RPI automatically generates both Yield and DPMO (Defects Per Million Opportunities) production charts.  There’s really nothing for the customer to do as the information on all boards produced is captured automatically.  You’ve seen these charts in many factories showing product data for many steps in the manufacturing process.  However, previously data from the reflow process was missing.  Only reflow oven machine data was available.  KIC’s RPI now provides this missing key product process data, providing another key link to product quality.

Q. This product offers a timely solution for manufacturers in this tough climate and I understand it has already received awards for its innovation. What has been your feedback so far?

Yes, RPI has already received several awards around the world.    People are looking for a solution to save money and ensure continued quality control.  When I visit customers and prospective customers their initial questions or requests can be taken care of by using RPI.  It’s wonderful to be able to say “Yes, RPI can help you with that” to most of their requests.  We have plugged the hole in the inspection process.

For the full interview go to:


2009 EMAsia Innovation Award in the category of Process Control Software for its RPI in-line inspection system.

2009 NPI Award in the category of Process Control Tools for its RPI in-line inspection system.

Innovative Technology Center Award at Apex 2009