• Home
  • About
  • Forums
  • Articles/Blogs
  • Ask the Guru
  • Profiling Guru Survey
You are here: Home / Archives for reflow oven

Tips on Cooking Both a Perfect Thanksgiving Turkey and a PCB

November 23, 2011 by Profiling Guru Leave a Comment

Tweet

Why does it take half a day to cook a Thanksgiving turkey?  The answer is simple ― you have 20 lb of bird that simply cannot just be nuked in a microwave like last night’s dinner.  If not properly thawed, prepared and monitored, you either have an overcooked, dried-out bird or worse: Salmonella. Strangely enough, as you will see in a moment, PCBs are not that much different.

Let’s say you skip the thawing process and in your haste stick a frozen bird in the oven.  What happens?  The bird may look properly cooked on the outside, but as soon as you try your skill with the carving knife, you either hit bedrock or the inside is completely raw. OK, I will admit I speak from personal experience on this one (please do not bring this up with my wife).  Are PCBs any different?  Well, your reflow profile has a preheat phase, with the purpose of bringing your PCB to temperature. In other words, the entire mass of the board with all its components is gradually brought to equilibrium. If you do not do this, you run the risk of thermally shocking your components when they hit reflow and peak.  Thawing your bird and preheating your PCB ― you have the same objective in mind.

So, for the vast majority of us, we really have no idea when the turkey is fully cooked until getting an internal reading. A PCB is no different. On the surface, both might look great, but upon closer inspection, you discover some components have defects due to improper reflow or, for that matter, when you cut into a turkey that is still pink it really hits home that you aren’t cooking a TV dinner.

turkey-in-Spec_SM01

Because of this, as we all know, a 20 lb turkey requires a thermometer. I will concede that some of you use the old “poke the bird and check for pink until done” trick. Let’s assume you are not as skilled, like me, for example. Would you seriously cook a turkey by relying solely on the oven’s temperature reading on your stovetop?  Of course not, but why do some of you profile your PCB by relying on your reflow oven’s reported readings? Are either situation that much different?  Actually, yes. Your nice self-contained turkey cooking oven is more of a steady state, but there remains a large difference between what is reported by the oven and the internal temperature of your turkey. In contrast, your PCB is exposed to anything but a steady state environment because it rides on a conveyor through different heated zones with blowers, extraction systems and both ends of the oven even open to the elements!  For this reason, any oven manufacturer will adamantly tell you to profile and with regularity. Alright, you may have learned how to cook a turkey in your Mama’s kitchen and, in fact, be skilled at not using a thermometer; however, I doubt any serious SMT manufacturer would take a similar approach, checking your PCBs regularly for “doneness” in your reflow process.

What about placing the fate of your Thanksgiving feast on the cheap-o plastic pop-up indicator that likely came with the turkey? Do not laugh. How many of us use the trailing wires that came with the reflow oven?  Now to be fair, both work in principal; otherwise, you would have the likes of Purdue Farms with food poisoning lawsuits on their hands, but they only give you ballpark readings in many cases. By design, the turkey is going to be a little overdone and dried out.  Your PCB, on the other hand, cannot afford to be a little overdone or it is simply OUT of spec.  You can get by with eating the overcooked turkey … the gravy and mashed potatoes are there to make up for less than a perfectly cooked bird. But your PCB will not be as forgiving.  Trailing wires, never mind being cumbersome to use, have a tendency to kink and stretch, which compromise their readings.  They also are susceptible to 50 or 60 cycle noise from some reflow oven environments, further questioning their accuracy in some cases.

So you want to cook the perfect bird. Who doesn’t? So you pony up for a stainless steel large-dial meat thermometer to accurately read the internal temperature of your 20 lb bird. You also pony up for a KIC Explorer with Navigator because you want to create the perfect deep-in spec reflow profile. It will not only tell you the specific temperature of the joints of your $500 BGAs, but it also will find a balance that does not overcook them or any of your other temperature-sensitive components on the PCB.  No pop-up indicator profiler needs to apply since the KIC Explorer with Navigator will go the extra mile and tell you not only if you are in-spec but how DEEP in-spec your profile is, along with what can you do to improve the profile in minutes, if not seconds.  Now do you know of any turkey thermometers that can do that?

So when you prepare your Thanksgiving turkey, and as you pause to give thanks, consider applying the same care and consideration that you have given to your family’s feast as you do to your PCBs.

Happy Thanksgiving – Profilingguru

Share

Filed Under: Featured, Improve, Reflow, TC's Tagged With: AOI, BGA, BGA Profiling, ceramic packages, cost-based tools, electronics manufacturing services, energy efficiency, flip chip, maximize throughput, Process monitoring, Process Window, profiling, profiling software, Reflow, reflow oven, reflow ovens, reflow process, reflow profiling, SMT, SMT and standards, SMT Reflow, soldering, SPI, surface mount technology, Thermal Management, thermal process, thermal profiling, thermocouple attachment

Reducing Reflow Product Changeover Time

November 7, 2009 by Profiling Guru Leave a Comment

Tweet

2009 Presentation at SMT Long Island on how to reduce the changeover time from one reflow profile recipe to another.  If you ever opened up your reflow oven to dump all its heat to lessen downtime, this 4 min video is for you!!!

To view the complete video series (click here).

To subscribe to my Podcast for iTunes (click here).

https://profilingguru.com/podcasts/Product_Changeover.m4v

Podcast: Play in new window | Download (Duration: 3:40 — 16.9MB)

Share

Filed Under: Improve, Podcasts, Process Window, Reflow Tagged With: AOI, BGA, BGA Profiling, ceramic packages, cost-based tools, electronics manufacturing services, energy efficiency, flip chip, maximize throughput, Process monitoring, Process Window, profiling, profiling software, Reflow, reflow oven, reflow ovens, reflow process, reflow profiling, SMT, SMT and standards, SMT Reflow, soldering, SPI, surface mount technology, Thermal Management, thermal process, thermal profiling, thermocouple attachment

Increasing Reflow Oven Throughput

November 6, 2009 by Profiling Guru Leave a Comment

Tweet

2009 Presentation at SMTAI San Diego on how to increase reflow oven throughput without sacrificing quality profiles in the process.  After you watch this 3 min video you will learn an easy method of increasing throughput on your reflow oven for a particular profile in 20 mins or less.

To view the complete video series (click here).

To subscribe to my Podcast for iTunes (click here).

https://profilingguru.com/podcasts/Increased_Throughput.m4v

Podcast: Play in new window | Download (Duration: 3:00 — 13.6MB)

Share

Filed Under: Improve, Podcasts, Reflow Tagged With: cost-based tools, efficiency, electronics manufacturing services, profiling, profiling software, Reflow, reflow oven, reflow ovens, reflow process, reflow profiling, SMT, SMT and standards, SMT Reflow, surface mount technology, Thermal Management, thermal process, thermal profile, thermal profiling

Across the Belt Uniformity and Reflow Profiling

October 13, 2009 by Profiling Guru Leave a Comment

Tweet

I am often asked the question about how to handle components that are close to the outer edge of a PCB.   Today a question came in on Circuitnet to highlight this problem:

Title: Issues with BGA Components Near PCB Edges

What issues are we likely to see when we place BGA components very close to PCB edges?

What impact might it have on reliability?

Will equipment (screening, placement, reflow, etc.) require modification?

T. B.

I leave it to the screen printer, pick and place and reflow oven guys to answer the equipment part of the equation, but I can answer how one can determine with a profile if your BGA is getting what it needs as well as how other aspects of your PCB are impacted.

Across the Belt Uniformity:

There can be anywhere from a 2 – 5+C variation in temperature across the belt.  For example, BTU uses this homemade fixture to test for uniformity.  The idea is fairly simple.  With a set of type K calibrated thermocouples, you can easily monitor 6 TCs across the belt.  You want obviously to see the least amount of variation (if you were wondering the front TC is for measuring air temperature which is also used for automatic mapping of the profile to the oven zones with KIC2000 software).

BTU tool

Profiling for Reflow:

BGAs typically require more heat to reach their peak temperatures than smaller massed components like electrolytic capacitors.   For example, your BGA might have a peak temperature of 245C.

PCB2

While your electrolytic capacitors cannot tolerate as high as a peak temperature, therefore you want to set their maximum peak temperature lower, for example to 235C (this is just a relative example).

PCB3

With KIC2000 software, you can define each component in isolation.  If the BGA is off on the edge, I might need to bump up even further my peak temperature spec since in many reflow ovens, the outer edge near the rail is the coolest.  This is why you see some ovens with heat tape running along the rails!  Keep in mind of course as you crank up your oven to reach higher temps to reflow your outer edge BGAs, everything else on your board is also going to be impacted.   More the reason you better be hooking up thermocouples to temperature sensitive components to ensure they do not get fried while you are focusing your attention on your BGAs.  Profiling software that can “balance” the board is a must.  If there ever was a case where software can help solve complex problems in profiling, here you go!

I had a webinar back in July talking about BGA profiling.  There is also a video that illustrates what I explained above.  You can find this in an earlier posting:  https://profilingguru.com/reflow/profiling-bga-webinar/

Share

Filed Under: Characterization, Define, Improve, Measure, TC's Tagged With: BGA, BGA Profiling, cost-based tools, efficiency, electronics manufacturing services, profiling, profiling software, Reflow, reflow oven, reflow ovens, reflow process, reflow profiling, SMT, SMT and standards, SMT Reflow, surface mount technology, Thermal Management, thermal process, thermal profile, thermal profiling

Are you profiling bare boards or bricks?

October 11, 2009 by Profiling Guru Leave a Comment

Tweet

No one of course reflows bare boards, so why would you profile one?  For that same matter, no one sells bricks, so why do you put one through your reflow oven?

Profiling Bare Boards:

Today I came across CM doing exactly this.  They were processing networking boards.   They were  just too complex and expensive to profile, so the solution instead of finding a scrap board or some other reasonable substitute was to profile it as a bare board.  I guess the thinking was it is better than nothing, but can anyone honestly say that a bare board comes close to representing a true production board?  After all wouldn’t you agree profiling modern boards with mixed components, higher densities and micro-BGAs are already a challenge and to think profiling a bare board would yield any reliable results is a stretch?

Profiling Bricks:

So if this is such a terrible solution, what about putting a brick through your reflow oven?   A brick, come on Brian, who does this?  Well what do you think you are doing when you take one of the many fixtures available on the market that are used for characterizing an oven and using it to profile?    I bet if you melted them down (with profiler included) they aren’t far off in mass from a brick.   Consider the following attributes of a large mass:

  1. A large mass will behave differently than a production board.
  2. A large mass acts like a heat sink and will cause the oven to react differently compared to when a production board is run through the reflow oven.
  3. A large mass will result in a change to airflow due to its larger size as compared to the production board.

Now notice I included the profiler as part of the mass.  Many fixtures further add mass by adding a two pound weight to the fixture!   Now don’t get me wrong, these fixture do give you a relative measurement from week to week or month to month as to changes in the oven, but they do not tell you if your product is in spec nor provide a thermal profile.   Changes in the oven do not neatly correlate to changes in one’s profile.  After all how can they?   Chaos theory came out of the field of thermal dynamics, nothing neat about it.  Just like a bare board is no substitute to a populated PCB, a brick is also no substitute.

Don’t take my word for it, hear it from the oven manufacturers themselves.  https://profilingguru.com/reflow/standard-calibration-tool-for-reflow-process/

Here is a quote from Fred Dimock of BTU:

Oven manufacturers normally use custom designed test fixtures to simulate a board but their real purpose is to measure uniformity across the oven and confirm that the oven is working correctly.

….I have personally seen companies place unrealistic performance specifications on reflow oven testing with (fixtures) boards that have little to do with actual production needs. For example, we once were required to show that an oven could reproduce an inspect ramp soak spike profile on two 12 X 18 inch aluminum sheets that were 0.040 and 0.080 inches thick without changing any recipe parameters….

….From a surface mount manufacturing point of view – single board oven performance testing has little benefit. The real answers are to use actual boards with TCs placed on the critical components….

Both solutions profiling bare boards and bricks are inadequate.  Make matters worse if you do both such as I saw with this CM, the results are only compounded.  In other words, you are developing a profile based on an unpopulated board and afterwords taking measurements with a thermal mass that does not in anyway represent how your oven will in fact react to a production board.  This is classic garbage in, garbage out.autofocus

Now there are alternative solutions that don’t require the destruction of a production board in the process.   Many of the automated systems will create accurate virtual representations of production boards without the need to attach a single thermocouple.   There are also some brilliant software solutions that allow you to create accurate profiles without the need to run a profile.  https://profilingguru.com/category/reflow/automation/

Share

Filed Under: Automation, Characterization, Measure Tagged With: BGA, cost-based tools, efficiency, electronics manufacturing services, profiling, profiling software, Reflow, reflow oven, reflow ovens, reflow process, reflow profiling, SMT, SMT and standards, SMT Reflow, SPI, surface mount technology, Thermal Management, thermal process, thermal profile, thermal profiling

Next Page »

Search Bar

Recent Posts

  • Profiling Guru Survey
  • Profiling Dual Lane Variable Speed Reflow Ovens
  • Tips on Cooking Both a Perfect Thanksgiving Turkey and a PCB
  • 2011 Profiling Guide
  • Man versus Forno de Refusão

Interesting Blogs

  • Circuits Assembly Blog
  • Rick Short – Indium Blog
  • SMT Editorial Blogspot

Resources

  • SMTnet
March 2023
M T W T F S S
 12345
6789101112
13141516171819
20212223242526
2728293031  
« Aug    

Return to top of page
Copyright © 2023. Corporate Child Theme on Genesis Framework · WordPress · Log in