• Home
  • About
  • Forums
  • Articles/Blogs
  • Ask the Guru
  • Profiling Guru Survey
You are here: Home / Archives for SPI

Tips on Cooking Both a Perfect Thanksgiving Turkey and a PCB

November 23, 2011 by Profiling Guru Leave a Comment

Tweet

Why does it take half a day to cook a Thanksgiving turkey?  The answer is simple ― you have 20 lb of bird that simply cannot just be nuked in a microwave like last night’s dinner.  If not properly thawed, prepared and monitored, you either have an overcooked, dried-out bird or worse: Salmonella. Strangely enough, as you will see in a moment, PCBs are not that much different.

Let’s say you skip the thawing process and in your haste stick a frozen bird in the oven.  What happens?  The bird may look properly cooked on the outside, but as soon as you try your skill with the carving knife, you either hit bedrock or the inside is completely raw. OK, I will admit I speak from personal experience on this one (please do not bring this up with my wife).  Are PCBs any different?  Well, your reflow profile has a preheat phase, with the purpose of bringing your PCB to temperature. In other words, the entire mass of the board with all its components is gradually brought to equilibrium. If you do not do this, you run the risk of thermally shocking your components when they hit reflow and peak.  Thawing your bird and preheating your PCB ― you have the same objective in mind.

So, for the vast majority of us, we really have no idea when the turkey is fully cooked until getting an internal reading. A PCB is no different. On the surface, both might look great, but upon closer inspection, you discover some components have defects due to improper reflow or, for that matter, when you cut into a turkey that is still pink it really hits home that you aren’t cooking a TV dinner.

turkey-in-Spec_SM01

Because of this, as we all know, a 20 lb turkey requires a thermometer. I will concede that some of you use the old “poke the bird and check for pink until done” trick. Let’s assume you are not as skilled, like me, for example. Would you seriously cook a turkey by relying solely on the oven’s temperature reading on your stovetop?  Of course not, but why do some of you profile your PCB by relying on your reflow oven’s reported readings? Are either situation that much different?  Actually, yes. Your nice self-contained turkey cooking oven is more of a steady state, but there remains a large difference between what is reported by the oven and the internal temperature of your turkey. In contrast, your PCB is exposed to anything but a steady state environment because it rides on a conveyor through different heated zones with blowers, extraction systems and both ends of the oven even open to the elements!  For this reason, any oven manufacturer will adamantly tell you to profile and with regularity. Alright, you may have learned how to cook a turkey in your Mama’s kitchen and, in fact, be skilled at not using a thermometer; however, I doubt any serious SMT manufacturer would take a similar approach, checking your PCBs regularly for “doneness” in your reflow process.

What about placing the fate of your Thanksgiving feast on the cheap-o plastic pop-up indicator that likely came with the turkey? Do not laugh. How many of us use the trailing wires that came with the reflow oven?  Now to be fair, both work in principal; otherwise, you would have the likes of Purdue Farms with food poisoning lawsuits on their hands, but they only give you ballpark readings in many cases. By design, the turkey is going to be a little overdone and dried out.  Your PCB, on the other hand, cannot afford to be a little overdone or it is simply OUT of spec.  You can get by with eating the overcooked turkey … the gravy and mashed potatoes are there to make up for less than a perfectly cooked bird. But your PCB will not be as forgiving.  Trailing wires, never mind being cumbersome to use, have a tendency to kink and stretch, which compromise their readings.  They also are susceptible to 50 or 60 cycle noise from some reflow oven environments, further questioning their accuracy in some cases.

So you want to cook the perfect bird. Who doesn’t? So you pony up for a stainless steel large-dial meat thermometer to accurately read the internal temperature of your 20 lb bird. You also pony up for a KIC Explorer with Navigator because you want to create the perfect deep-in spec reflow profile. It will not only tell you the specific temperature of the joints of your $500 BGAs, but it also will find a balance that does not overcook them or any of your other temperature-sensitive components on the PCB.  No pop-up indicator profiler needs to apply since the KIC Explorer with Navigator will go the extra mile and tell you not only if you are in-spec but how DEEP in-spec your profile is, along with what can you do to improve the profile in minutes, if not seconds.  Now do you know of any turkey thermometers that can do that?

So when you prepare your Thanksgiving turkey, and as you pause to give thanks, consider applying the same care and consideration that you have given to your family’s feast as you do to your PCBs.

Happy Thanksgiving – Profilingguru

Share

Filed Under: Featured, Improve, Reflow, TC's Tagged With: AOI, BGA, BGA Profiling, ceramic packages, cost-based tools, electronics manufacturing services, energy efficiency, flip chip, maximize throughput, Process monitoring, Process Window, profiling, profiling software, Reflow, reflow oven, reflow ovens, reflow process, reflow profiling, SMT, SMT and standards, SMT Reflow, soldering, SPI, surface mount technology, Thermal Management, thermal process, thermal profiling, thermocouple attachment

Reducing Reflow Product Changeover Time

November 7, 2009 by Profiling Guru Leave a Comment

Tweet

2009 Presentation at SMT Long Island on how to reduce the changeover time from one reflow profile recipe to another.  If you ever opened up your reflow oven to dump all its heat to lessen downtime, this 4 min video is for you!!!

To view the complete video series (click here).

To subscribe to my Podcast for iTunes (click here).

https://profilingguru.com/podcasts/Product_Changeover.m4v

Podcast: Play in new window | Download (Duration: 3:40 — 16.9MB)

Share

Filed Under: Improve, Podcasts, Process Window, Reflow Tagged With: AOI, BGA, BGA Profiling, ceramic packages, cost-based tools, electronics manufacturing services, energy efficiency, flip chip, maximize throughput, Process monitoring, Process Window, profiling, profiling software, Reflow, reflow oven, reflow ovens, reflow process, reflow profiling, SMT, SMT and standards, SMT Reflow, soldering, SPI, surface mount technology, Thermal Management, thermal process, thermal profiling, thermocouple attachment

Are you profiling bare boards or bricks?

October 11, 2009 by Profiling Guru Leave a Comment

Tweet

No one of course reflows bare boards, so why would you profile one?  For that same matter, no one sells bricks, so why do you put one through your reflow oven?

Profiling Bare Boards:

Today I came across CM doing exactly this.  They were processing networking boards.   They were  just too complex and expensive to profile, so the solution instead of finding a scrap board or some other reasonable substitute was to profile it as a bare board.  I guess the thinking was it is better than nothing, but can anyone honestly say that a bare board comes close to representing a true production board?  After all wouldn’t you agree profiling modern boards with mixed components, higher densities and micro-BGAs are already a challenge and to think profiling a bare board would yield any reliable results is a stretch?

Profiling Bricks:

So if this is such a terrible solution, what about putting a brick through your reflow oven?   A brick, come on Brian, who does this?  Well what do you think you are doing when you take one of the many fixtures available on the market that are used for characterizing an oven and using it to profile?    I bet if you melted them down (with profiler included) they aren’t far off in mass from a brick.   Consider the following attributes of a large mass:

  1. A large mass will behave differently than a production board.
  2. A large mass acts like a heat sink and will cause the oven to react differently compared to when a production board is run through the reflow oven.
  3. A large mass will result in a change to airflow due to its larger size as compared to the production board.

Now notice I included the profiler as part of the mass.  Many fixtures further add mass by adding a two pound weight to the fixture!   Now don’t get me wrong, these fixture do give you a relative measurement from week to week or month to month as to changes in the oven, but they do not tell you if your product is in spec nor provide a thermal profile.   Changes in the oven do not neatly correlate to changes in one’s profile.  After all how can they?   Chaos theory came out of the field of thermal dynamics, nothing neat about it.  Just like a bare board is no substitute to a populated PCB, a brick is also no substitute.

Don’t take my word for it, hear it from the oven manufacturers themselves.  https://profilingguru.com/reflow/standard-calibration-tool-for-reflow-process/

Here is a quote from Fred Dimock of BTU:

Oven manufacturers normally use custom designed test fixtures to simulate a board but their real purpose is to measure uniformity across the oven and confirm that the oven is working correctly.

….I have personally seen companies place unrealistic performance specifications on reflow oven testing with (fixtures) boards that have little to do with actual production needs. For example, we once were required to show that an oven could reproduce an inspect ramp soak spike profile on two 12 X 18 inch aluminum sheets that were 0.040 and 0.080 inches thick without changing any recipe parameters….

….From a surface mount manufacturing point of view – single board oven performance testing has little benefit. The real answers are to use actual boards with TCs placed on the critical components….

Both solutions profiling bare boards and bricks are inadequate.  Make matters worse if you do both such as I saw with this CM, the results are only compounded.  In other words, you are developing a profile based on an unpopulated board and afterwords taking measurements with a thermal mass that does not in anyway represent how your oven will in fact react to a production board.  This is classic garbage in, garbage out.autofocus

Now there are alternative solutions that don’t require the destruction of a production board in the process.   Many of the automated systems will create accurate virtual representations of production boards without the need to attach a single thermocouple.   There are also some brilliant software solutions that allow you to create accurate profiles without the need to run a profile.  https://profilingguru.com/category/reflow/automation/

Share

Filed Under: Automation, Characterization, Measure Tagged With: BGA, cost-based tools, efficiency, electronics manufacturing services, profiling, profiling software, Reflow, reflow oven, reflow ovens, reflow process, reflow profiling, SMT, SMT and standards, SMT Reflow, SPI, surface mount technology, Thermal Management, thermal process, thermal profile, thermal profiling

SMT related Links to know

September 30, 2009 by Profiling Guru Leave a Comment

Tweet

RSS feeds, Tweets, blogs and newsletters, how do you keep up?   Well here is the latest on what’s available in the SMT industry.   I subscribe to all of these newsletters and regularly pick out areas of interest related to profiling for you.   I also comb the blogs though I only know of two, not including profilingguru, which is quite remarkable considering other industries have hundreds if not thousands.   The SMTA group forum on LinkedIn yields on occasion a nugget, but you need to build a profile to join.  SMTnet has always been a jewel.  Lastly, Twitter is a new phenomenon for many of us.   I am still trying to get the knack of it myself but it does have some value no doubt and will continue to grow.

On-line Newsletters:

Circuitnet

Electronics Production World

EMS Now

GlobalSMT

PCB Update

SMT Week

Blogs:

Circuits Assembly

SMT Editorial Blogspot

Forums:

SMTA on LinkedIn

SMTnet

Twitter:

Circuit Assembly

Global SMT

SMT Magazine

Share

Filed Under: Links Tagged With: AOI, BGA, BGA Profiling, ceramic packages, cost-based tools, electronics manufacturing services, energy efficiency, flip chip, maximize throughput, Process monitoring, Process Window, profiling, profiling software, Reflow, reflow oven, reflow ovens, reflow process, reflow profiling, SMT, SMT and standards, SMT Reflow, soldering, SPI, surface mount technology, Thermal Management, thermal process, thermal profiling, thermocouple attachment

Increasing Silicon Solar Efficiency Manufacturing

September 24, 2009 by Profiling Guru Leave a Comment

Tweet

Global Solar Technology printed an article on Sept 16, 2009 highlighting an exciting ground breaking study that shows by optimizing the profile during the wafer firing process, a significant gain of .51% is achievable.  .51% is HUGE, which can easily translate into hundreds of thousands of dollars in increased revenues per solar manufacturing line.  That’s even in today’s depressed silicon market.

(Click here to view full article)

The thermal process of the wafer is one of the keys to achieving improved efficiencies. Drying steps are expected to remove most of the solvent used in the pastes before entering the firing zones. Solar cell metallization generally follows a spike profile type. Wafers only see peak temperature for approximately 1-4 seconds based on wafer and metallization chemistries. The most important steps include the clean burnout of the organics in the paste followed by etching through the silicon nitride (or other) passivation/ARC layer and, ultimately, the formation of good ohmic contact between the sintered silver and the very top layer of n-type silicon. These all lead to low contribution from series resistance and recombination resulting from the formation of the contacts. Control of this profile will become more crucial as the emitter depth decreases with increasing sheet resistance. Both uniformity of diffusion and furnace will be necessary to achieve the desired efficiency improvements.

The article walks you step by step through the study, here is an extend excerpt from the article related to profiling:

The base line profile on these wafers had been developed prior to the project based on extensive knowledge of the paste chemistry and years of practical experience with the metallization process. The base line profile can be seen in dark blue in Figure 1. For the base line test, as with all the subsequent process improvement tests, the wafers were processed at the same time and fired under the same conditions. Ten wafers were run through the furnace within a short period of time, and all were subjected to the same profile. After firing, we measured the cell efficiency in our continuous lamp tester. The average efficiency for the base line profile was 15.53 percent, as can be seen in Figure 2 (η Cell). Based on the type of wafer that was selected for this study, and the fact that a continuous lamp tester was used rather than a flash tester, this efficiency number was considered good. Now we wanted to make it better.

kic_article_1
Figure 1: The wafer profiles for each group

It is important to acknowledge that what we were trying to accomplish was not to find a single “golden” profile for the wafers, but rather the optimal thermal process window. The Heraeus paste SOL9235H is a very robust paste that can perform well throughout a range of profiles. Establishing a thermal process window will set the upper and lower limits for the wafer’s peak temperature, time above certain temperature levels, etc. within which the cell efficiencies will be highest.

Figure 2: Cell efficieny testing
Figure 2: Cell efficieny testing
Figure 3: Boxplot of cell efficiencies for base wafer profile
Figure 3: Boxplot of cell efficiencies for base wafer profile

Since we did not yet know the upper and lower limits to our process window, we used the base line profile as a starting point, and we initially set relatively wide process limits around it as shown in Figure 4. The profiler software always measures how well the profile fits the chosen process window with a single number called Process Window Index (PWI). The PWI number is 100 percent when the profile is at the edge of the process window. The lower the number, the closer the profile is to the center of the process window. A PWI of 0 percent represents a profile at the very center of the process window.

Figure 4: Original Process Window
Figure 4: Original Process Window

Our KIC profiler also has profile simulation software that allowed us to change the furnace zone temperatures or conveyor speed in the software, and to immediately predict the resulting wafer profile. For the first process improvement step, we suspected that a higher peak temperature would benefit the metallization. We tried a few zone temperature changes in the software and studied the software simulation of the corresponding profile before settling on a 10°C increase in the furnace peak zones (Zone 5 and 6). Once the furnace stabilized on the new settings, we ran a set of 10 wafers for our Group 2 test. The average cell efficiency increased from 0.40 to 15.93 percent. For Group 3, we increased the peak temperatures settings in zones 5 and 6 another 10°C, but the average cell efficiency of the 10 wafers dropped by 0.12 percent.

For the Group 4 test, we set the zones back to the Group 2 level and reduced the furnace conveyor speed. The prediction software showed the impact on the wafer profile both in terms of peak temperature changes and, in particular, in terms of time above the various temperature levels shown in Figure 4. Due to this, we reduced the conveyor speed from 200 to 190″/min. The average cell efficiencies increased yet another 0.11 percent above the Group 2 numbers to a cell efficiency of 16.04 percent. Our final test for Group 5 kept the temperatures stable but increased the conveyor speed from 190 to 210″/min. That dropped the average cell efficiency by 0.16 percent.

Figure 5: e-Clispe TC attachment fixture
Figure 5: KIC's e-Clispe TC attachment fixture

Conclusion

By systematically changing certain key profile dimensions, such as peak temperature and time above 500°C, we were able to identify the “sweet spot” in the metallization process. The PWI index and the profiler’s simulation software allowed us to quickly identify the appropriate furnace settings for profiles below, above and in the middle of the optimal settings. This sweet spot yielded an average cell efficiency of 0.51 percent higher than previous experiments had allowed.

The Heraeus SOL 9235H silver paste’s properties allow for high-efficiency processing in a range of profiles, hence a process window can be established around the “ideal” profile identified above. Heraeus now advices its clients to the appropriate process window for each application.

With modern profilers, solar cell manufacturers can adjust their furnace setup until the wafer profile is positioned within the suggested process window. Over time, the thermal process will drift due to a number of variables such as heating lamps changing as they get older, wear and tear in the furnace, conveyor speed drifts, exhaust changes, and more. It then is a simple task for the manufacturing engineer to run another profile, and to use the profiler process optimization software to identify the furnace settings that will yield the appropriate profile.

This method for process optimization depends on accurate and repeatable profile readings. One excessive noise in the profile readings historically has been caused by the attachment method for the TCs. Both cemented and dummy wafer TCs tend to measure the material used to secure the TCs in place, rather than to measure the surface of the wafer. Pinning the TC to the wafer with a weight suffers from non-repeatability. The fixture with flattened TC beads has worked well for us.

Finally, process optimization must be quick and easy enough to be useful for volume production lines, as opposed to only the laboratory line. There is little use in perfecting the process in the laboratory just to see the transfer to the production lines fail because the furnace properties are different. Once the correct process window is established, the high-volume furnaces can be adjusted within minutes, keeping production downtime to a bare minimum. This task must not only be performed during transfer from the lab to the production line, but it also must be performed periodically due to the drift in the thermal process that is a fact of life in any production line. The few minutes it takes to adjust the production furnaces for peak performance is richly rewarded by the ability to consistently produce higher efficiency cells.

Future Studies

The temperature readings taken by the e-Clipse TC attachment fixture are higher than historic readings taken by older TC attachment methods. A future study will focus on quantifying the accuracy and repeatability of the new profiling method as it relates to the theoretical true wafer surface temperatures.

More information: Bjorn Dahle, president of KIC, +1-619-300-5586.

Share

Filed Under: Solar Tagged With: efficiency, energy efficiency, Process monitoring, Process Window, profiling, profiling software, Reflow, Silicon Cell Manufacturing, Solar, Solar Cell Manufacturing, Solar Cells, Solar Efficiency, SPI, thermal process, thermal profile, thermal profiling, thermocouple attachment, thin fim solar cell manufacturing

Next Page »

Search Bar

Recent Posts

  • Profiling Guru Survey
  • Profiling Dual Lane Variable Speed Reflow Ovens
  • Tips on Cooking Both a Perfect Thanksgiving Turkey and a PCB
  • 2011 Profiling Guide
  • Man versus Forno de Refusão

Interesting Blogs

  • Circuits Assembly Blog
  • Rick Short – Indium Blog
  • SMT Editorial Blogspot

Resources

  • SMTnet
March 2023
M T W T F S S
 12345
6789101112
13141516171819
20212223242526
2728293031  
« Aug    

Return to top of page
Copyright © 2023. Corporate Child Theme on Genesis Framework · WordPress · Log in